
The Conceptual
Architecture of
Chrome

Thick Glitches
Tyler Mainguy, Liam Walsh, Andrea Perera-Ortega, Jessica Dassanayake, Alistair Lewis,
Brendan Kolisnik

Introduction

Web Browser
developed by

for Windows, Linux,
macOS, iOS and

Android
Released in 2008

World’s Most
Popular Browser

Accounts for approximately

of usage share

One of the
most stable

and
high performance

browsers due to its
multi-processing
implementation

● Multiple conceptual architectures were made and compared.

● Some factors considered to derive our final architecture:

Derivation Process

Architecture
Style(s)

Coupling and
Cohesion

Multi-Process
Architecture

UI

Browser ProcessData Plugins
Process

Alternative Conceptual Architecture

Render
Process

Module

Depends on

Legend

The Architecture

User
Interface

 Browser

Rendering Engine

Plugins
Networking

Stack

Module

Depends on

Legend

In-Depth Look at the Architecture
● Layered architecture to increase security between systems and increase

modularity. Each system is a service to the layer above it.
● Object-oriented architecture to abstract systems. Change an implementation of

an object without affecting its clients.

Browser
manages components of
the application, interacts

with the operating system
and contains persistent

storage.

Rendering System
Takes an HTTP response and renders
a bitmap. Implements everything that

renders content in a tab.

Plugins
Plugins run in a separate
process to add additional

third-party code.

Networking Stack
The network receives and resolves all

network protocols.

User Interface
The link between the user and

the browser.

● The Browser is responsible for the overall execution of the
Chrome application

● It manages all of the components of the architecture and provides
an interface for data to be exchanged across components

● Provides segregation between browser components which
increases security and cohesion, while decreasing coupling

● Facilitates multiple processes occurring simultaneously (1 process
per tab)

● Interacts with the operating system and contains persistent
storage (bookmarks, history etc.)

Browser

Component Dependency

Rendering Engine ● The browser passes the Rendering Engine HTML, CSS, JavaScript and other data
from the Network Stack so that it can be compiled together into a visual webpage that
can be displayed by the User Interface

Network Stack ● The browser sends data requests to the network stack, which is responsible for
communicating with the external internet to retrieve the data requested by the browser.

● The Network Stack then passes the data back to the Browser, which will, in turn, send
it to the Rendering Engine to be processed.

Plugins ● The browser relies on Plugins in order to incorporate third party software in order to
add custom functionality to the browser.

● If a plugin crashes, the entire browser will not crash as it is a separate subsystem.

Browser Dependencies

● Implements everything that renders content inside a
browser tab (includes parsing).

● Each tab typically runs its own renderer process.
● Runs in a sandbox with limited access to the operating

system (no direct disk or network access).

Rendering Engine

Component Dependency

Browser ● rendering engine depends on the browser as it does not have direct
access to persistent storage or network requests

● increasing security in case the rendering engine is compromised
● this decreases coupling and increases the cohesion of the

networking and rendering engine system

Plugins ● one plugin for the entire instance of a web browser (not one per
render process)

● direct access for drawing and the presentation of the site with
plugins

● plugins are sandboxed now, less of a security threat (still some)
● this dependency increases coupling for performance

Rendering Engine Dependencies

Multi-Process Arch. & Concurrency

● Concurrency means multiple processes can run at the
same time

● Multi-process architecture takes advantage of multi-core
CPUs (which are now commonplace)

● Main purpose is to increase execution speed

● Reduces single points of failure

● Increased memory usage

Sequence Diagram

- Chrome team decided to migrate
initial IPC system to Mojo

- A lot of tight coupling to the IPC
lead to a ripple effect when code
was changed

- Browser subsystem has multiple
dependencies

- Team in charge of browser
needs to interact more with other
teams

- Not as independent as other
subsystem teams

Team Issues

Limitations & Lessons Learned
Limitations:

- A lot of new and old information available on the
internet, which can make it overwhelming to
research

- Chrome is a commercial product and not open
source, so we had to look at Chromium, which is
open source

- Most architecture documentation is from its release
in 2008

Lessons:
- Large group sizes and busy schedules make it

harder to organize meetings
- However, group setting made it easier to

discuss and develop ideas

Architecture
Styles Used

Conclusion

Layered

Object-Oriented The multi-process architecture
allows for concurrency.

Benefits

Security Performance Reliability

Questions?

